JOIN IN NOW

Courses

Courses

Explore our wide range of courses, filtered by age, program type, and exam profile. Whether you’re interested in verbal or quantitative subjects, we have something to challenge and inspire you.

  • Sorting:

  • Be a Scientist!

    What do paleontologists work on? How do meteorologists predict the weather? How do molecular biologists isolate DNA? In this interactive course, students live and work as different researchers every day and become familiar with the scientific method. Scientific fields such as Astrophysics, Paleontology, Meteorology, Oceanology, Genetics and Health Sciences, as well as environmental concepts such as water and energy resources, are presented in a fun and experiential way.

    The young scientists put on the chemist’s lab coat and perform an electrolysis experiment to harness hydrogen. They construct the human cell with simple materials, isolate DNA, delve into different medical methods, apply water purification technology as environmental engineers, make their own crystals as geologists, and tend their own crops as agronomists.

    They embark through complex engineering concepts by designing and constructing their own pendulum. Through experiments, discussions and group work students gain knowledge of different scientific fields but also a deeper understanding of what it really means to be a scientist.

    Learning Objectives

    • Design and implement an original experiment using all steps of the scientific method.
    • Collect, organize and analyze experimental data and observations and present the results.
    • Select, research and compare three scientific disciplines and describe their similarities and differences.

    Diving into the Deep: The Mysteries of the Oceans

    Why is global sea level rising? Why is sea water so salty? How are ocean currents created and how do they affect the climate and weather of the entire planet? Is it true that shells and coral reefs are in danger? How can we clean up an oil spill?

    Let’s become oceanologists for a while and try to answer the above questions.

    Join us, to experiment, discuss and discover all those factors that affect the composition of the oceans, life in them and our entire ecosystem.

    Fundamentals of Computer Science

    Do computers make mistakes? How does a machine even know what to do? Is Artificial Intelligence really intelligent? This course will guide students through the principles of computer science, exploring the theory and real-world applications of the concepts that govern it. Students will learn about the concepts of algorithms, binary mathematics, Boolean algebra and digital logic, and the theory of computation. They will be introduced to the workings of computer architecture, operating systems, computer networks and embedded systems, and gain insight into the neural networks that power modern AI systems. Throughout the course, the students will have the opportunity to build on their newfound theoretical knowledge through simulations on topics such as Digital Design and Turing Machines, as well as a plethora of hands-on programming challenges, primarily in C++.

    Learning Objectives

    • Gain a broad understanding of how computing and technology are shaping our world.
    • Formulate and implement algorithms in one or more industry-standard programming languages; Investigate code errors, debug and test programs, and evaluate complexity of algorithms
    • Think algorithmically to solve programming problems using conditional, iterative and recursive structures, and other techniques.
    • Compare and contrast procedural and object-oriented programming paradigms
    • Develop collaboration skills in team, project-based learning environments

    Genetics

    Did you know that if one person’s DNA was unraveled and placed end to end, it would stretch to the sun and back at least 60 times? Or that humans and chimps share a surprising 98.8 percent of their DNA? How can we be so similar and yet so different? How does all that relate to having your mother’s eyes, or your father’s nose? Or even your great grandmother’s hair? And how did complex, multicellular organisms evolve from simpler, single-celled ones? We begin with an exploration of Mendelian genetics to determine how simple traits are passed from parents to offspring, delve into more complex concepts such as sex-linked traits and polygenic inheritance, to move towards understanding the genetics of inherited disorders. We will also take a look into the fascinating world of 6 million years of evolution. Furthermore, we learn and practice some of the methods and techniques that geneticists use to explore these concepts, such as PCR, gel electrophoresis, and bacterial transformations. 

    Learning objectives

    • Predict the impact of mutations and the inheritance patterns of different diseases.
    • Utilize biotechnological laboratory skills to determine the genotypes of individuals and explore the process of transformation, a key technique in genetic engineering. 
    • Research and present a genetically inherited disease/syndrome including characteristics such as genetic heterogeneity, penetrance and expressivity.

    International Relations

    It’s the late 1800s and you are the leader of a European country: the Austrian Empire or the Kingdom of Prussia (Germany) or smaller but influential countries such as the Kingdom of Two Sicilies or Switzerland. What decisions will you make? This is your reality for the next three weeks, as you undertake the European Leadership Project, a simulation that focuses on Europe and its political, military, economic, and cultural developments from the end of the Napoleonic wars (1815) until the start of World War I (1914).

    As presidents, tsars, popes or dukes, you present your decisions, answer questions posed by your opponents, try to solicit support for your quest and tackle international crises, aiming to win the final vote. Through rigorous research and analysis of your own and your opponents’ decisions, you gain a broad understanding of the study of the origins of modern international politics, emphasizing on significant themes such as foreign policy and the role of great powers, superpowers, ethnic and religious movements and terrorist groups in the arena of international affairs. Among others, you focus on the relationship between constructivism and realism in International Relations, evaluate the importance of good relations between countries with respect to the economy and evaluate why the 1929 Geneva Conference was necessary.

    Learning Objectives

    • Develop cognitive skills such as primary source analysis, logical inferences, and map construction and interpretation.
    • Evaluate, synthesize and analyze key facts and ideas productively, to deepen your understanding of modern reality and the world issues which concern policymakers and citizens today.
    • Discuss and interpret key ideas in International Relations, such as the Security Dilemma, the contribution of nationalism to the rise of imperialism and totalitarian regimes. 

    More than Just a Game… Video Game Design in Unity (English)

    This course introduces students to the fundamentals of video game design. Utilizing a project-based approach and the Unity Game Engine it aims to teach the basic theory and concepts of video game design from the perspective of a video game designer. At the same time, students learn the core skills of basic computer programing using the C# language as well as visual scripting.

    Designing video games is not only about programming game mechanics but it is also about creating an entertaining experience for the player. This course introduces the concept and theory of “player centric” game design which includes topics like; the essential elements of a game, the structure of a video game, what the core mechanics of a game are and how they work with the user interface to create gameplay. Along with design elements, student learn the different roles of the design team members in the video game industry.

    The programming language C# is introduced along with visual scripting using Playmaker. By the end of the course, students will be able to create interactivity and game play through scripting, using functions, finite state machines, variables, and if statements.

    By the end of the course students should be able to understand video game design theory. They will utilize this theory and scripting skills to design and create a working prototype game that engages and entertains the player.

    Students are expected to be familiar with standard computer operations (e.g., login, cut & paste, email attachments, compressing files, etc.) before enrolling in the course. It is recommended to have completed the ‘Introduction to Java’ or the ‘Scratch’ course. The course will be conducted in English.

    This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.