JOIN IN NOW

Courses

Courses

Explore our wide range of courses, filtered by age, program type, and exam profile. Whether you’re interested in verbal or quantitative subjects, we have something to challenge and inspire you.

  • Sorting:

  • Adventures in Science and Engineering

    In this dynamic and interactive course, students embark on an exciting journey to explore the fascinating worlds of Science and Engineering. Through a combined approach involving engaging discussions, hands-on experiments, and creative projects, students will develop a deep understanding of fundamental scientific principles and engineering concepts and how they contribute to solving real-world problems and improving our everyday lives.


    They will discover the scientific method and engineering design process, gaining valuable skills in critical thinking, problem solving and collaboration during experimentation. From exploring the density of materials to constructing their own electrical circuits, students will have the opportunity to apply their knowledge in a series of entertaining and interactive experiments and projects.They will build aluminum foil boats to explore buoyancy,  construct various motorized vehicles, design small gliders to investigate aerodynamics, and explore the fascinating world of stating electricity. Throughout the course, emphasis will be placed on promoting creativity, curiosity, and collaboration, as students discover the wonders of science and engineering and develop a sense of excitement for the endless possibilities that lie ahead.


    Learning Objectives:

    • Describe the scientific method and the engineering design process and explain how they are used to solve problems and develop solutions.
    • Understand the fundamental principles of density, buoyancy, dynamics, energy, work, electricity, power and motion including Newton’s laws and their application in engineering projects.
    • Design and conduct experiments to investigate scientific phenomena and engineering concepts and analyze experimental data to draw conclusions based on evidence and observations.
    • Construct and test creative and innovative models, prototypes, and devices to solve engineering challenges such as mousetrap cars, bridges, towers, hydraulic cranes and many more.
    • Effective collaboration with peers to communicate scientific ideas and engineering solutions clearly and effectively through written and oral presentations.

    Ancient Architecture & Hidden Math

    When was mathematical thinking born? What knowledge did architects have 4 thousand years ago? How were the pyramids built? What is the “golden” ratio? Are there perfect numbers? Where is Math hiding in the Parthenon? Why is the seating area in ancient Greek theaters in a circular shape?

    In this course, we will analyze the use of Mathematics in Architecture over the centuries and its use by different cultures. Starting from the beginning of counting and geometry, we will discover how the ancient architects used their mathematical knowledge in each period. We will travel to Ancient Egypt, learn about the cultural development of the Sumerians and the Babylonians of Mesopotamia and discover the great contribution of Greek mathematics in Ancient Greece.

    Students will have the opportunity to learn about monumental construction achievements of the ancient civilizations and the application of mathematics in them, to find hidden “golden” numbers, to create their own constructions and to discover how mathematics are manifested in the impressive constructions of the Egyptians, the Mesopotamians and the Ancient Greeks.

    Data and Chance

    You meet a new friend at CTY who teaches you a dice game. The rules are simple: if you roll a 4, you win and the game ends. If your friend rolls a 5, she wins and the game ends. You take turns rolling until one person wins. If you roll first, what is the probability that you will win the game? There are several ways to solve this problem, and the answer is not obvious.

    In this course, students develop a greater understanding of probability and statistics, two areas of mathematics that easily transfer from the classroom to the real world. Students conduct experiments and generate data which they display in graphs, charts, and tables in order to compare the effects of particular variables. For example, students might analyze data to examine how various design characteristics of a paper airplane, such as weight or length, affect the distance it will travel. In addition, students consider other data sources, including newspapers and journals, and identify examples of incorrectly gathered or misrepresented data that have been used to mislead consumers or influence voters.

    Students also explore probability, the study of chance, to learn how to use numerical data to predict future events. Students examine permutations and combinations; develop strategies for calculating the number of possible outcomes for various events; calculate probabilities of independent, dependent, and compound events; and learn to distinguish between theoretical and experimental probability.

    Nanotechnology: Billionths at Work!

    So small yet so powerful … We cannot see it, but it can change our everyday life! “Nano” indicates something small, something minute, about a billion times less than a meter. In these dimensions materials can go ‘crazy’ and display unique, unprecedented properties. How does the size of a material affect its properties? How do some plants manage to repel water and clean themselves? How can I make my clothes stain resistant? How does the gecko lizard walk on the ceiling? How can a robot climb onto a glass window? How do all this relate to bio-mimicry and everyday life?

    Nanotechnology is linked to many disciplines, such as physics, biology, chemistry and mathematics, to produce useful applications with innovative properties. Through a series of approaches, including problem-solving, designing and conducting experiments, games, studying natural and artificial nanomaterials, searching for information, modeling, and group activities, students are introduced to the exciting world of science and technology at a nanoscale!

    Robotics and Clever Control Systems

    Are robots smarter than humans? Will automated control systems eventually become clever enough to control us? In this course, students embark on a journey into the world of technology, engineering, algorithmic thinking and programming. They learn how to design, build, and program their own robots and clever control systems using LEGO EV3 Mindstorms and Arduino UNO.


    In the course’s robotics segment, students delve into the capabilities of LEGO EV3 Mindstorms, a versatile robotics kit renowned for its ease of use. Through engaging activities and challenges, students learn to assemble robots, utilize sensors, and program behaviors using a Scratch 3-based programming environment tailored for EV3. They discover how to navigate obstacles, follow lines, and complete tasks, all while honing their problem-solving and critical-thinking skills.


    In the course’s automation segment, students explore the world of electronics and clever control systems using Arduino UNO, a popular microcontroller platform. With Arduino, students learn to interface sensors, motors, and other peripherals, enabling them to automate processes and create clever control systems like an automated plant watering system or a home security system. Using a Scratch 3-based programming environment adapted for Arduino, students write code to control inputs and outputs, create responsive behaviors, and bring their projects to life.


    By the end of the course, students emerge with a deeper understanding of robotics, automation, and programming, equipped with the skills and knowledge to tackle real-world challenges in the ever-evolving field of technology.


    Learning Objectives

    • Develop construction skills for building robots using LEGO technic pieces, including structural stability, gear mechanisms and attachment methods, and assimilate the basic features of the Arduino UNO board including digital and analog input/output pins, power supply options, and communication interfaces.
    • Understand the use and different types of sensors (e.g. touch, color, ultrasonic, and gyro sensors) to gather and use sensor data to create responsive behaviors in robots, such as obstacle avoidance, line following, and object detection.
    • Learn basic principles of electronics, including voltage, current, resistance, circuits, and components such as resistors, LEDs, and how to connect and use various sensors with Arduino boards, including temperature, light, motion sensors and ultrasonic sensors.
    • Develop problem-solving skills to diagnose issues, troubleshoot hardware or software problems, and debug Arduino or robot projects effectively, utilizing the basic safety practices when working with electronics.

    The Magic of Mathematical Thinking

    Welcome to the enchanting world of mathematical thinking! In this course, yοu will embark on a magical journey where numbers, shapes, and patterns come to life through the power of mathematical thinking.

    Through captivating stories, interactive games, and hands-on activities, you will uncover the beauty and wonder of mathematics. You will learn to see the world through a mathematical lens, discovering the hidden patterns and structures that surround you every day.

    From exploring the symmetry of nature to unraveling the mysteries of prime numbers, you will engage in a variety of activities designed to stimulate their curiosity and creativity. You will develop problem-solving skills as they tackle mathematical puzzles and challenges, learning to approach problems with imagination and ingenuity.

    Join us on this magical adventure where mathematical thinking sparks curiosity, inspires creativity, and opens doors to endless possibilities!

    Learning Objectives:

    • Define and distinguish between inductive, deductive, and abductive reasoning, providing examples of each.
    • Explore and explain the relationship between number patterns and geometry, using both explicit and recursive formulas.
    • Be introduced to symbolic logic by constructing and interpreting truth tables.
    • Solve problems using algebraic, geometric, and symbolic representations and different models.
    • Cultivate skills to enhance cooperation, creativity, critical thinking, flexibility.
    This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.