JOIN IN NOW

Courses

Courses

Explore our wide range of courses, filtered by age, program type, and exam profile. Whether you’re interested in verbal or quantitative subjects, we have something to challenge and inspire you.

  • Sorting:

  • Bioengineering: A Glance at the Future of Medicine

    Research advancements in tissue engineering and drug delivery are revolutionizing medicine. Stem cells, nanotechnology, artificial intelligence and biomaterial research have enabled us to envision methods that may radically change how we treat patients in the future.

    In this course students are introduced to bioengineering, the discipline that applies the engineering principles of design and analysis to biological systems and biomedical technologies.

    Students learn about fundamentals of both biology and engineering, as anatomy and physiology concepts are presented along with the engineering design cycle.  

    Using online virtual labs and applications students learn about fundamentals of biomedicine, the field of bioengineering and novel approaches to medicine. They apply their knowledge working in groups in order to complete the course’s final team project “Rescue Helicopter”, proposing a design for the new Red Cross Helicopter Ambulance, to save people from remote parts of Greece, provide life support and transfer the patients to the nearest hospital.


    Learning objectives

    • Understand the interdisciplinary nature of bioengineering, incorporating principles of biology, engineering, and medicine and its driving innovations, such as tissue engineering, drug delivery, stem cells, nanotechnology, artificial intelligence, and biomaterials.
    • Master fundamental concepts of biology and engineering, including anatomy, physiology, and the engineering design cycle and apply them to solve medical problems effectively.
    • Solve practical scenarios and real-world challenges, through virtual labs and applications, to enhance practical skills and the ability to implement novel approaches to medicine.
    • Develop teamwork and project management skills. 

    Counting without Counting

    One of the first things we learn in our life is counting. How difficult or easy is it though? How can seemingly complex mathematical concepts be helpful or necessary in order to efficiently count when it is not practically possible to count the objects one by one?

    Discrete Mathematics and especially Combinatorics answer such questions using patterns, colorings, graphs and many other such tools. Some of them, such as the Fibonacci numbers, can be found in nature and art, but strangely also find application in kilometers-miles conversions or express the number of ways someone can climb a ladder going up one or two steps at a time.

    In this course students will explore applications of Combinatorics in other sciences such as Computer Science and Economics, but also come in touch with problems from Mathematical Olympiads and riddles. They will also develop the ability to use abstract ways of thinking in real-life scenarios, and see applications of Discrete Mathematics in problems that scientists are called to solve.

    CSI @ CTY

    Hey there future, detectives! Are you ready to dive into the exhilarating world of forensics’ science and crack some mind-bending cases? Throughout this interactive course, aspiring young detectives will embark on a journey to understand how chemical analysis plays a crucial role in solving crimes. From analyzing mysterious substances to deciphering hidden clues at crime scenes, you’ll learn the essential skills used by forensic chemists to crack even the toughest cases.

    Fingerprint lifting, blood typing, hair, fiber, soil and food analysis are just some of the criminalistics that will be introduced! You’ll learn everything about fundamental but nifty techniques that help CSI investigators sniff out clues and identify the perpetrator, such as titration, chromatography, spectroscopy, DNA electrophoresis. But wait, there’s more! Did you know that forensic scientists can determine a person’s age by analyzing their bones? You’ll explore the fascinating world of forensic anthropology and learn how to estimate the age and gender of skeletal remains—just like a real-life bone detective.

    Your skills will be put to the test as you tackle thrilling crime scenarios, from mysterious burglaries to dastardly poisonings. You’ll work in teams to collect and analyze evidence, follow leads, and catch the culprit before they strike again!

    So, if you’re ready to unlock the secrets of forensics and become the ultimate crime-solving superstar, join us in “CSI @CTY ” and prepare for the adventure of a lifetime! Because with a little chemistry know-how, anything is possible!

    Learning Objectives:

    • Collect, handle and analyze different types (fingerprints, blood, DNA, fibers, glass, bullets, etc) of evidence
    • Identify, perform and report scientifically, analytical chemistry techniques 
    • Write a forensics report using data to support findings reached after reviewing the available evidence.
    • Understand chemistry topics needed for the proposed forensic skills 

    Experimenting with language: A Writer’s Perspective

    Pulitzer Prize winning author Junot Diaz once said, “A writer is a writer because, even when there is no hope, even when nothing you do shows any signs of promise, you keep writing anyway.” Students in this course explore the ways in which writers use language to inspire, and make meaning in the world. With the help and support of the instructors, students practice reading with the sharp eye of a writer. As readers, they navigate various pieces of short fiction and poetry while questioning, investigating and employing techniques published writers use to make language come alive. As writers, they work toward developing their literary voices while experimenting with different writing methods and strategies. Students take risks and play with language as they create and share their work, collaborate with one another in writer’s workshops and develop finalized versions of their own, original, writing.

    Learning Objectives

    • Employ literary elements, narrative techniques, and figurative language in both formal and informal writing assignments.
    • Participate in multiple writing workshops that offer constructive criticism on your work in a safe, growth-oriented space.
    • Draft, revise, and undertake other important elements of the writing process in order to produce a minimum of two polished pieces of writing (short fiction and poetry).

    Foundations of Psychology

    Can you measure happiness or anger? How do brain functions, our cognition, the environment and our personality interact to shape who we are? Can you gain all this knowledge in three weeks? Foundations of Psychology gives students the opportunity to establish connections between factors that determine our behavior and wellbeing. Students learn how to conduct research and gather data, in order to measure emotions, behaviors, and cognition. A holistic approach to human behavior is utilized, combining the understanding of how the brain, hormones and genetics influence behaviors, along with the impact of the environment.  Experimentation, hands-on activities and role-play, as well as debates and heated discussions will provide students with a thorough understanding of the foundations of the most important fields of Psychology. The course also focuses on abnormal psychology, one of the areas that most students are especially interested in. Mental health disorders, their symptoms, causes and management are introduced from a critical point of view.

    Learning Objectives 

    • Demonstrate knowledge on research methods and biological psychology, such as brain anatomy, hormone regulation and genetics.
    • Experiment with memory and thinking games, to determine the role of cognition in behavior. 
    • Critically assess the role of the environment on development and wellbeing.
    • Research and review mental health disorders, their causes and management. 

    Introduction to Biomedical Sciences

    Which organ has over 400 functions? Are there liquid tissues in the human body? What factors contribute to the development of cancer? Much like Leonardo da Vinci’s fascination with human anatomy, our course delves into these intriguing questions! Drawing upon fundamental biological and chemical concepts, students explore the intricate anatomical and physiological mechanisms that govern normal human function, as an introduction to human biology and the science of medicine. Students learn about the human body’s different systems, including the digestive, cardiovascular, respiratory, musculoskeletal, excretory, nervous, endocrine, and immune systems, highlighting their interconnectedness. Laboratory activities encompass histology, anatomy and physiology (including dissections) and biochemistry techniques. Students also learn practical skills, such as suturing, and dive into group work, solving epidemiology mysteries and investigating the causes and cures for different diseases.

    Learning Objectives

    • Model the interrelatedness of three human body systems working together to maintain homeostasis. 
    • Demonstrate the skills and tools to complete scientific dissections.
    • Select, review and report on a disease or syndrome that impacts one human body system, including its causes, manifestation, symptoms and treatment methods. 
    This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.