JOIN IN NOW

Courses

Courses

Explore our wide range of courses, filtered by age, program type, and exam profile. Whether you’re interested in verbal or quantitative subjects, we have something to challenge and inspire you.

  • Sorting:

  • Bioengineering: A Glance at the Future of Medicine

    Research advancements in tissue engineering and drug delivery are revolutionizing medicine. Stem cells, nanotechnology, artificial intelligence and biomaterial research have enabled us to envision methods that may radically change how we treat patients in the future.

    In this course students are introduced to bioengineering, the discipline that applies the engineering principles of design and analysis to biological systems and biomedical technologies.

    Students learn about fundamentals of both biology and engineering, as anatomy and physiology concepts are presented along with the engineering design cycle.  

    Using online virtual labs and applications students learn about fundamentals of biomedicine, the field of bioengineering and novel approaches to medicine. They apply their knowledge working in groups in order to complete the course’s final team project “Rescue Helicopter”, proposing a design for the new Red Cross Helicopter Ambulance, to save people from remote parts of Greece, provide life support and transfer the patients to the nearest hospital.


    Learning objectives

    • Understand the interdisciplinary nature of bioengineering, incorporating principles of biology, engineering, and medicine and its driving innovations, such as tissue engineering, drug delivery, stem cells, nanotechnology, artificial intelligence, and biomaterials.
    • Master fundamental concepts of biology and engineering, including anatomy, physiology, and the engineering design cycle and apply them to solve medical problems effectively.
    • Solve practical scenarios and real-world challenges, through virtual labs and applications, to enhance practical skills and the ability to implement novel approaches to medicine.
    • Develop teamwork and project management skills. 

    Biomedical Sciences: Unraveling the Mysteries of the Human Body

    The journey begins with an introduction to the world of Cell Biology and Microbiology, where students study the structure of cells and the basic categories of pathogenic microorganisms, focusing on the factors that disrupt the homeostasis of our body. The quest for knowledge continues with the organs and the organ systems of the human body. Students explore the complex anatomical and physiological mechanisms that govern the human body, come into contact with and potentially identify important diseases, while exploring the subject matter of basic medical specialties.

    Counting without Counting

    One of the first things we learn in our life is counting. How difficult or easy is it though? How can seemingly complex mathematical concepts be helpful or necessary in order to efficiently count when it is not practically possible to count the objects one by one?

    Discrete Mathematics and especially Combinatorics answer such questions using patterns, colorings, graphs and many other such tools. Some of them, such as the Fibonacci numbers, can be found in nature and art, but strangely also find application in kilometers-miles conversions or express the number of ways someone can climb a ladder going up one or two steps at a time.

    In this course students will explore applications of Combinatorics in other sciences such as Computer Science and Economics, but also come in touch with problems from Mathematical Olympiads and riddles. They will also develop the ability to use abstract ways of thinking in real-life scenarios, and see applications of Discrete Mathematics in problems that scientists are called to solve.

    CSI @ CTY

    Hey there future, detectives! Are you ready to dive into the exhilarating world of forensics’ science and crack some mind-bending cases? Throughout this interactive course, aspiring young detectives will embark on a journey to understand how chemical analysis plays a crucial role in solving crimes. From analyzing mysterious substances to deciphering hidden clues at crime scenes, you’ll learn the essential skills used by forensic chemists to crack even the toughest cases.

    Fingerprint lifting, blood typing, hair, fiber, soil and food analysis are just some of the criminalistics that will be introduced! You’ll learn everything about fundamental but nifty techniques that help CSI investigators sniff out clues and identify the perpetrator, such as titration, chromatography, spectroscopy, DNA electrophoresis. But wait, there’s more! Did you know that forensic scientists can determine a person’s age by analyzing their bones? You’ll explore the fascinating world of forensic anthropology and learn how to estimate the age and gender of skeletal remains—just like a real-life bone detective.

    Your skills will be put to the test as you tackle thrilling crime scenarios, from mysterious burglaries to dastardly poisonings. You’ll work in teams to collect and analyze evidence, follow leads, and catch the culprit before they strike again!

    So, if you’re ready to unlock the secrets of forensics and become the ultimate crime-solving superstar, join us in “CSI @CTY ” and prepare for the adventure of a lifetime! Because with a little chemistry know-how, anything is possible!

    Learning Objectives:

    • Collect, handle and analyze different types (fingerprints, blood, DNA, fibers, glass, bullets, etc) of evidence
    • Identify, perform and report scientifically, analytical chemistry techniques 
    • Write a forensics report using data to support findings reached after reviewing the available evidence.
    • Understand chemistry topics needed for the proposed forensic skills 

    Epidemiology: Understanding Global Health

    What does epidemiology study? How does a pandemic start? How does mathematics allow us to calculate the risk of such an occurrence? How do vaccines provide protection and how safe are they? Is it possible to predict and prevent future epidemics?

    During the course, students take on multiple roles. They become epidemiologists, researchers, microbiologists and even public health policy-makers, in order to investigate scientific data, examine cases of pandemics that have occurred in the past, study the epidemiological course of infectious diseases, learn about the most dangerous microorganisms for our health, and seek new ways to prevent and treat, always based on science and technology.

    The purpose of such activities is to offer students a holistic understanding of the concept of health and how it connects to social and environmental factors. In addition, students become familiar with different research tools that are being used in the above areas and have the opportunity to develop their analytical and critical thinking skills on important issues concerning public and individual health.

    Food Power: Highway to Health

    What is kombucha and why is it a point of discussion? Is producing meat on a petri dish a viable option? How would you design a new product and what are its technical specifications? Students are introduced to the magical world of food through a variety of exciting activities and experiments!

    Inspired by Aristotle’s saying, “we are what we eat”, the journey begins by exploring food groups, discovering their impact on both personal well-being and the health of the planet. Equipped with the tools to decipher nutrition labels, students learn to make informed, healthy food decisions and adopt sustainable eating habits. Key issues such as the sourcing of critical raw materials and the development of sustainable food production systems are also examined, promoting a holistic understanding of the role of nutrition for a healthier future.

    Students analyze global trends in nutrition, try fermented foods and alternative protein sources, learn how taste tests are done in modern laboratories and in the industry, and design their own products. Using laboratory experiments and their “detective” skills they detect and isolate microorganisms in food and decide whether it is safe for consumers. Through discussions and experiments, students gain a deep understanding of environmental and social challenges, reflect on the need for sustainable practices and choices in food production, taste foods from around the world, and work as food researchers.

    Learning Objectives

    • Study and thoroughly check food labels and their nutritional information.
    • Practice laboratory techniques used in the field of food and nutrition science and their role in industry.
    • Create scientific posters, develop innovative ideas and design and present new products.
    • Understand scientific terms such as probiotics, gut microbiome, fermented foods.
    This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.