JOIN IN NOW

Courses

Courses

Explore our wide range of courses, filtered by age, program type, and exam profile. Whether you’re interested in verbal or quantitative subjects, we have something to challenge and inspire you.

  • Sorting:

  • International Relations

    It’s the late 1800s and you are the leader of a European country: the Austrian Empire or the Kingdom of Prussia (Germany) or smaller but influential countries such as the Kingdom of Two Sicilies or Switzerland. What decisions will you make? This is your reality for the next three weeks, as you undertake the European Leadership Project, a simulation that focuses on Europe and its political, military, economic, and cultural developments from the end of the Napoleonic wars (1815) until the start of World War I (1914).

    As presidents, tsars, popes or dukes, you present your decisions, answer questions posed by your opponents, try to solicit support for your quest and tackle international crises, aiming to win the final vote. Through rigorous research and analysis of your own and your opponents’ decisions, you gain a broad understanding of the study of the origins of modern international politics, emphasizing on significant themes such as foreign policy and the role of great powers, superpowers, ethnic and religious movements and terrorist groups in the arena of international affairs. Among others, you focus on the relationship between constructivism and realism in International Relations, evaluate the importance of good relations between countries with respect to the economy and evaluate why the 1929 Geneva Conference was necessary.

    Learning Objectives

    • Develop cognitive skills such as primary source analysis, logical inferences, and map construction and interpretation.
    • Evaluate, synthesize and analyze key facts and ideas productively, to deepen your understanding of modern reality and the world issues which concern policymakers and citizens today.
    • Discuss and interpret key ideas in International Relations, such as the Security Dilemma, the contribution of nationalism to the rise of imperialism and totalitarian regimes. 

    Introduction to Biomedical Sciences

    Which organ has over 400 functions? Are there liquid tissues in the human body? What factors contribute to the development of cancer? Much like Leonardo da Vinci’s fascination with human anatomy, our course delves into these intriguing questions! Drawing upon fundamental biological and chemical concepts, students explore the intricate anatomical and physiological mechanisms that govern normal human function, as an introduction to human biology and the science of medicine. Students learn about the human body’s different systems, including the digestive, cardiovascular, respiratory, musculoskeletal, excretory, nervous, endocrine, and immune systems, highlighting their interconnectedness. Laboratory activities encompass histology, anatomy and physiology (including dissections) and biochemistry techniques. Students also learn practical skills, such as suturing, and dive into group work, solving epidemiology mysteries and investigating the causes and cures for different diseases.

    Learning Objectives

    • Model the interrelatedness of three human body systems working together to maintain homeostasis. 
    • Demonstrate the skills and tools to complete scientific dissections.
    • Select, review and report on a disease or syndrome that impacts one human body system, including its causes, manifestation, symptoms and treatment methods. 

    Mathematical Modeling

    Mathematics is more than just numbers and symbols on a page. Applications of mathematics are indispensable in the modern world. Math can be used to determine whether a meteor will impact Earth, predict the spread of an infectious disease, or analyze a remarkably close presidential election. In this course, students create and evaluate mathematical models to represent and solve problems across a broad range of disciplines, including political science, economics, biology, and physics.

    Students begin with a review of some of the core mathematical tools in modeling, such as linear functions, lines of best fit, and exponential and logarithmic functions. Using these tools, students examine models such as those used in population growth and decay, voting systems, or the motion of a spring. Students also learn how to use Euler and Hamilton circuits to find the optimal solutions in a variety of real-world situations, such as determining the most efficient way to schedule airline travel. A introduction to probability and statistics lead into a study of using deterministic versus stochastic models to predict the spread of an epidemic and explore classic mathematical problems such as the traveling salesman problem, birthday paradox, and light switching problem.  Students are introduced to logic proofs by induction and contradiction.  Students leave this course familiar with all steps of the modeling process, from defining the problem and making assumptions, to assessing the model for strengths and weaknesses.

    Principles of Engineering Design

    What is the difference between science and engineering? What are the techniques that must be applied for successfully tackling any engineering challenge, from designing and building a bed-side table to conceptualizing and sending a shuttle to space? How can a group of engineers efficiently compartmentalize a multi-system project, allocate tasks and optimize the budget provided to solve a multifaceted constructional problem? This course explores a range of topics from physics and science and bridges the gap between pure theoretical knowledge and its practical application. Through daily doses of lectures, class discussions, problem-solving and plentiful hands-on lab activities, the students will be exposed to an array of concepts, varying from Newtonian dynamics and circuitry to fluid dynamics and thermal physics and through their application, complete engineering tasks of progressively increasing complexity. 

    Learning objectives:

    • Apply concepts from various topics of physics into practical constructional projects with strict requirements, aimed at tackling specific problems of varying complexity and constraints.
    • Train in the engineering design process, practical problem-solving and collaborative teamwork to complete assigned engineering design and production tasks. 
    • Develop and train a variety of technical skills, including detailed technical drawings of projects, precision soldering of electronic components and wood work skills. 

    Taming Randomness

    Chance plays an important part in all aspects of life.

    We take chances every day: will a shot at goal land in the goal or miss? Will we be caught in a sudden shower or not? How long do we need to wait to be served in our favourite burger house?

    Chance or random variation is also a central feature of all working systems: a scientist taking measurements in a lab; a disease spreading through a population; an economist studying price fluctuation. In all these processes some element of chance or randomness are present.  Is it possible to understand and therefore model and analyse such phenomena? If so, what are the tools we need to achieve that? Do we live in a world of randomness, or, as Einstein famously claimed, no one plays dice with the universe?

    During this course, we will attempt to “tame randomness” using mathematics as our compass. 

    Learning objectives:

    • Develop a robust theoretical understanding of the basics of probability theory. 
    • Develop the capability to identify the underlying randomness in real life problems, and decide how to model and quantify it.
    • Gain an in-depth understanding of the basic technical tools needed in applied probability.
    • Make use of random variables and theoretical probability distributions to model simple random processes (Η).

    The World of Εconomics and Enterpreneurship

    Alfred Marshall described economics as “the study of mankind in the ordinary business of life.” How much are you willing to pay for ice cream on a hot summer day? Why professional athletes earn so much? Is there such a thing as a perfectly competitive market? Why has Google been accused of monopolistic practices?  Is Bitcoin a financial bubble or our future currency? Which are the key success factors for businesses in the modern economic era? What is a “start-up” company and how can it be financed?

    The “world of economics and entrepreneurship” aims to answer these questions in a creative and exciting way; by investigating how various economic agents (households, firms and governments) make crucial decisions, students become familiar with the mechanisms that shape our current economic and business reality and therefore our society. During this course, students analyze basic economic and business concepts, such as supply and demand, scarcity of resources, cost of production, market structure, incentives, business strategy, innovation and more, and consider them in the context of today’s global economy.

    Case studies and participation in the creation of a small “start-up” through a firm simulation game will provide useful insight into businesses organization, operations and decision-making. Upon completion of the course, students will acquire useful knowledge upon the basic functions of an economy and a business, becoming themselves responsible decision-makers in their everyday lives.

    This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.