JOIN IN NOW

Courses

Courses

Explore our wide range of courses, filtered by age, program type, and exam profile. Whether you’re interested in verbal or quantitative subjects, we have something to challenge and inspire you.

  • Sorting:

  • Principles of Engineering Design

    What is the difference between science and engineering? What are the techniques that must be applied for successfully tackling any engineering challenge, from designing and building a bed-side table to conceptualizing and sending a shuttle to space? How can a group of engineers efficiently compartmentalize a multi-system project, allocate tasks and optimize the budget provided to solve a multifaceted constructional problem? This course explores a range of topics from physics and science and bridges the gap between pure theoretical knowledge and its practical application. Through daily doses of lectures, class discussions, problem-solving and plentiful hands-on lab activities, the students will be exposed to an array of concepts, varying from Newtonian dynamics and circuitry to fluid dynamics and thermal physics and through their application, complete engineering tasks of progressively increasing complexity. 

    Learning objectives:

    • Apply concepts from various topics of physics into practical constructional projects with strict requirements, aimed at tackling specific problems of varying complexity and constraints.
    • Train in the engineering design process, practical problem-solving and collaborative teamwork to complete assigned engineering design and production tasks. 
    • Develop and train a variety of technical skills, including detailed technical drawings of projects, precision soldering of electronic components and wood work skills. 

    Probability and Game Theory

    Game theory
    What do a prime minister, a general, an athlete, a lawyer, a businessman, a psychologist, a spouse and a biologist have in common? Game Theory deals with the study of the behavior of rational beings (those who decide and act on the basis of their logic and “interest”), in situations where they compete or cooperate with others.  Therefore, all of us are faced daily with difficult problems that are at the core of Game Theory, which in conjunction with Mathematics, is indispensable in the understanding of social sciences, including economics, sociology, environmental studies, and psychology.

    Probability
    Uncertainty is prevalent in our lives. Everyday questions, such as what’s the weather going to be this weekend and whether it’s worth playing a game of chance, or larger-scale questions like how the global climate changes, and how an epidemic develops, or even more exotic ones, such as what is the possibility of life on other planets or the risk of the earth being hit by a celestial body, cannot be answered with complete certainty. Through mathematics and probability theory we can study uncertainty and analyze these situations. 

    In this course, we deal with the fundamental concepts of theory and harness its power to study games between people, companies, states and other entities when faced with situations of uncertainty. Students play games, study and analyze them and are led to the most innovative scientific ideas, to make strategic decisions, thereby increasing their profit and/or reducing their damage!

    Learning Objectives

    • Review and apply the fundamentals of probability to solve mathematical problems, develop an understanding of the theoretical foundations for fundamental models in game theory and model certain types of human behavior in competitive decision-making situations.
    • Examine and find the balance (solution) in zero-sum, non-zero sum, signaling, cooperative games, simultaneous and sequential games and utilize real-life and computer simulations to test theories and justify conclusions.
    • Share ideas and solutions to problems, both written and orally through individual exercises and collaborative projects or tournaments.

    Robotics and Clever Control Systems

    Are robots smarter than humans? Will automated control systems eventually become clever enough to control us? In this course, students embark on a journey into the world of technology, engineering, algorithmic thinking and programming. They learn how to design, build, and program their own robots and clever control systems using LEGO EV3 Mindstorms and Arduino UNO.


    In the course’s robotics segment, students delve into the capabilities of LEGO EV3 Mindstorms, a versatile robotics kit renowned for its ease of use. Through engaging activities and challenges, students learn to assemble robots, utilize sensors, and program behaviors using a Scratch 3-based programming environment tailored for EV3. They discover how to navigate obstacles, follow lines, and complete tasks, all while honing their problem-solving and critical-thinking skills.


    In the course’s automation segment, students explore the world of electronics and clever control systems using Arduino UNO, a popular microcontroller platform. With Arduino, students learn to interface sensors, motors, and other peripherals, enabling them to automate processes and create clever control systems like an automated plant watering system or a home security system. Using a Scratch 3-based programming environment adapted for Arduino, students write code to control inputs and outputs, create responsive behaviors, and bring their projects to life.


    By the end of the course, students emerge with a deeper understanding of robotics, automation, and programming, equipped with the skills and knowledge to tackle real-world challenges in the ever-evolving field of technology.


    Learning Objectives

    • Develop construction skills for building robots using LEGO technic pieces, including structural stability, gear mechanisms and attachment methods, and assimilate the basic features of the Arduino UNO board including digital and analog input/output pins, power supply options, and communication interfaces.
    • Understand the use and different types of sensors (e.g. touch, color, ultrasonic, and gyro sensors) to gather and use sensor data to create responsive behaviors in robots, such as obstacle avoidance, line following, and object detection.
    • Learn basic principles of electronics, including voltage, current, resistance, circuits, and components such as resistors, LEDs, and how to connect and use various sensors with Arduino boards, including temperature, light, motion sensors and ultrasonic sensors.
    • Develop problem-solving skills to diagnose issues, troubleshoot hardware or software problems, and debug Arduino or robot projects effectively, utilizing the basic safety practices when working with electronics.

    Taming Randomness

    Chance plays an important part in all aspects of life.

    We take chances every day: will a shot at goal land in the goal or miss? Will we be caught in a sudden shower or not? How long do we need to wait to be served in our favourite burger house?

    Chance or random variation is also a central feature of all working systems: a scientist taking measurements in a lab; a disease spreading through a population; an economist studying price fluctuation. In all these processes some element of chance or randomness are present.  Is it possible to understand and therefore model and analyse such phenomena? If so, what are the tools we need to achieve that? Do we live in a world of randomness, or, as Einstein famously claimed, no one plays dice with the universe?

    During this course, we will attempt to “tame randomness” using mathematics as our compass. 

    Learning objectives:

    • Develop a robust theoretical understanding of the basics of probability theory. 
    • Develop the capability to identify the underlying randomness in real life problems, and decide how to model and quantify it.
    • Gain an in-depth understanding of the basic technical tools needed in applied probability.
    • Make use of random variables and theoretical probability distributions to model simple random processes (Η).

    The Author’s Workshop

    Students, within the writing community of their classroom, learn to express themselves freely and to listen to the opinion of others. This writing course helps students sharpen their skills and become creative in reading and writing.  This not only enriches their knowledge of setting the scene, the characters, and the plot, but it also shows them how to use figurative speech and a variety of plot mechanics.

    The Magic of Mathematical Thinking

    Welcome to the enchanting world of mathematical thinking! In this course, yοu will embark on a magical journey where numbers, shapes, and patterns come to life through the power of mathematical thinking.

    Through captivating stories, interactive games, and hands-on activities, you will uncover the beauty and wonder of mathematics. You will learn to see the world through a mathematical lens, discovering the hidden patterns and structures that surround you every day.

    From exploring the symmetry of nature to unraveling the mysteries of prime numbers, you will engage in a variety of activities designed to stimulate their curiosity and creativity. You will develop problem-solving skills as they tackle mathematical puzzles and challenges, learning to approach problems with imagination and ingenuity.

    Join us on this magical adventure where mathematical thinking sparks curiosity, inspires creativity, and opens doors to endless possibilities!

    Learning Objectives:

    • Define and distinguish between inductive, deductive, and abductive reasoning, providing examples of each.
    • Explore and explain the relationship between number patterns and geometry, using both explicit and recursive formulas.
    • Be introduced to symbolic logic by constructing and interpreting truth tables.
    • Solve problems using algebraic, geometric, and symbolic representations and different models.
    • Cultivate skills to enhance cooperation, creativity, critical thinking, flexibility.
    This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.